Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
mBio ; : e0378821, 2022 Feb 08.
Article in English | MEDLINE | ID: covidwho-2270955

ABSTRACT

The severe acute respiratory coronavirus-2 (SARS-CoV-2) is the cause of the global outbreak of COVID-19. Evidence suggests that the virus is evolving to allow efficient spread through the human population, including vaccinated individuals. Here, we report a study of viral variants from surveillance of the Delaware Valley, including the city of Philadelphia, and variants infecting vaccinated subjects. We sequenced and analyzed complete viral genomes from 2621 surveillance samples from March 2020 to September 2021 and compared them to genome sequences from 159 vaccine breakthroughs. In the early spring of 2020, all detected variants were of the B.1 and closely related lineages. A mixture of lineages followed, notably including B.1.243 followed by B.1.1.7 (alpha), with other lineages present at lower levels. Later isolations were dominated by B.1.617.2 (delta) and other delta lineages; delta was the exclusive variant present by the last time sampled. To investigate whether any variants appeared preferentially in vaccine breakthroughs, we devised a model based on Bayesian autoregressive moving average logistic multinomial regression to allow rigorous comparison. This revealed that B.1.617.2 (delta) showed 3-fold enrichment in vaccine breakthrough cases (odds ratio of 3; 95% credible interval 0.89-11). Viral point substitutions could also be associated with vaccine breakthroughs, notably the N501Y substitution found in the alpha, beta and gamma variants (odds ratio 2.04; 95% credible interval of1.25-3.18). This study thus overviews viral evolution and vaccine breakthroughs in the Delaware Valley and introduces a rigorous statistical approach to interrogating enrichment of breakthrough variants against a changing background. IMPORTANCE SARS-CoV-2 vaccination is highly effective at reducing viral infection, hospitalization and death. However, vaccine breakthrough infections have been widely observed, raising the question of whether particular viral variants or viral mutations are associated with breakthrough. Here, we report analysis of 2621 surveillance isolates from people diagnosed with COVID-19 in the Delaware Valley in southeastern Pennsylvania, allowing rigorous comparison to 159 vaccine breakthrough case specimens. Our best estimate is a 3-fold enrichment for some lineages of delta among breakthroughs, and enrichment of a notable spike substitution, N501Y. We introduce statistical methods that should be widely useful for evaluating vaccine breakthroughs and other viral phenotypes.

2.
Infect Control Hosp Epidemiol ; : 1-4, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-2237478

ABSTRACT

We prospectively surveyed SARS-CoV-2 RNA contamination in staff common areas within an acute-care hospital. An increasing prevalence of surface contamination was detected over time. Adjusting for patient census or community incidence of coronavirus disease 2019 (COVID-19), the proportion of contaminated surfaces did not predict healthcare worker COVID-19 infection on study units.

3.
Infect Control Hosp Epidemiol ; 43(9): 1135-1141, 2022 09.
Article in English | MEDLINE | ID: covidwho-2185206

ABSTRACT

BACKGROUND: Multidrug-resistant organisms (MDROs) colonizing the healthcare environment have been shown to contribute to risk for healthcare-associated infections (HAIs), with adverse effects on patient morbidity and mortality. We sought to determine how bacterial contamination and persistent MDRO colonization of the healthcare environment are related to the position of patients and wastewater sites. METHODS: We performed a prospective cohort study, enrolling 51 hospital rooms at the time of admitting a patient with an eligible MDRO in the prior 30 days. We performed systematic sampling and MDRO culture of rooms, as well as 16S rRNA sequencing to define the environmental microbiome in a subset of samples. RESULTS: The probability of detecting resistant gram-negative organisms, including Enterobacterales, Acinetobacter spp, and Pseudomonas spp, increased with distance from the patient. In contrast, Clostridioides difficile and methicillin-resistant Staphylococcus aureus were more likely to be detected close to the patient. Resistant Pseudomonas spp and S. aureus were enriched in these hot spots despite broad deposition of 16S rRNA gene sequences assigned to the same genera, suggesting modifiable factors that permit the persistence of these MDROs. CONCLUSIONS: MDRO hot spots can be defined by distance from the patient and from wastewater reservoirs. Evaluating how MDROs are enriched relative to bacterial DNA deposition helps to identify healthcare micro-environments and suggests how targeted environmental cleaning or design approaches could prevent MDRO persistence and reduce infection risk.


Subject(s)
Cross Infection , Methicillin-Resistant Staphylococcus aureus , Cross Infection/microbiology , Cross Infection/prevention & control , DNA, Bacterial , Delivery of Health Care , Drug Resistance, Multiple, Bacterial , Enterococcus , Gram-Negative Bacteria , Humans , Prospective Studies , RNA, Ribosomal, 16S/genetics , Staphylococcus aureus , Wastewater
4.
Am J Infect Control ; 50(4): 462-464, 2022 04.
Article in English | MEDLINE | ID: covidwho-1653967

ABSTRACT

We evaluated the effect of terminal cleaning on SARS-CoV-2 RNA contamination of COVID-19 isolation rooms in an acute care hospital. SARS-CoV-2 RNA was detected on 32.1% of room surfaces after cleaning; the odds of contamination increased with month. The prevalence of elevated high-touch surface contamination was lower in terminally cleaned rooms than patient-occupied rooms.


Subject(s)
COVID-19 , Disinfection , COVID-19/prevention & control , Hospitals , Humans , Patients' Rooms , RNA, Viral/genetics , SARS-CoV-2
5.
Infect Control Hosp Epidemiol ; : 1-6, 2021 Dec 27.
Article in English | MEDLINE | ID: covidwho-1627722

ABSTRACT

BACKGROUND: The spatial and temporal extent of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) environmental contamination has not been precisely defined. We sought to elucidate contamination of different surface types and how contamination changes over time. METHODS: We sampled surfaces longitudinally within COVID-19 patient rooms, performed quantitative RT-PCR for the detection of SARS-CoV-2 RNA, and modeled distance, time, and severity of illness on the probability of detecting SARS-CoV-2 using a mixed-effects binomial model. RESULTS: The probability of detecting SARS-CoV-2 RNA in a patient room did not vary with distance. However, we found that surface type predicted probability of detection, with floors and high-touch surfaces having the highest probability of detection: floors (odds ratio [OR], 67.8; 95% credible interval [CrI], 36.3-131) and high-touch elevated surfaces (OR, 7.39; 95% CrI, 4.31-13.1). Increased surface contamination was observed in room where patients required high-flow oxygen, positive airway pressure, or mechanical ventilation (OR, 1.6; 95% CrI, 1.03-2.53). The probability of elevated surface contamination decayed with prolonged hospitalization, but the probability of floor detection increased with the duration of the local pandemic wave. CONCLUSIONS: Distance from a patient's bed did not predict SARS-CoV-2 RNA deposition in patient rooms, but surface type, severity of illness, and time from local pandemic wave predicted surface deposition.

SELECTION OF CITATIONS
SEARCH DETAIL